ID Content Options
22017411

From the given values

\(\large E_{2}=hv_{1}\)

and \(\large E_{3}=hv_{3}\)

Now \(\large hv_{2}=E_{3}-E_{2}\, \, so\, \, v_{2}=v_{3}-v_{1}\)

Hence \(\large v_{1}+v_{2}=v_{3}\)


Please choose your answer from the right side options
// // // // //
22017412

It is given three capacitors of equal capacities are connected in parallel

And also one of the same capacity is connected in series with its combination

And the resultant capacity is 3.75 . \(\large \mu F\)

Resultant capacity \(\Large C_{eq}=\frac{3C\times C}{3C+C}\)

\(\large C_{eq}=\frac{3C}{4}=3.75\)

Hence C = 5 \(\large \mu F\)


Please choose your answer from the right side options
// // // // //
22017413

\(\Large S=\frac{G}{8}\, \, ,\, \, S=\frac{G}{n-1} \)

\(\Large \Rightarrow \frac{G}{8}=\frac{G}{n-1} \)

So n = 8 + 1 = 9

range of galvanometer in increased nine times so \(\large S' = \frac {S}{9}\)

 

 


Please choose your answer from the right side options
// // // // //
22017414

\(\large \iota _{x} =40\, cm,\, \,\iota _{R} =60 \, cm\)

\(\Large \frac{x}{R}=\frac{\imath _{x}}{\imath _{R}}=\frac{40}{60}=\frac{2}{3}-----(i)\)

\(\Large \frac{x+30}{R}=\frac{60}{40}\)

\(\large {2(x+30)}=3R ----- (ii)\)

From equation (i) and (ii) we can derive the value

\(\large x=24\Omega \)

 

 


Please choose your answer from the right side options
// // // // //
22017415

Given values are \(\large a=0.2\times 10^{-3}m, \,D=2m, \, \lambda =5\times 10^{-7}m\)

\(\Large x= \frac{\lambda D}{a}=\frac{5\times 10^{-7}\times 2}{0.2\times 10^{-3}}\)

\(\large x= 5\times 10^{-3}m\)

Distance between 1st minima on either side \(\large = (5 \times 10^{-3}) + (5 \times 10^{-3})=10\times 10^{-3}\)

\(\large = 10^{-2}\)


Please choose your answer from the right side options
// // // // //
22017416

\(\large Power=V_{RMS}.I_{RMS}\,cos \Phi \)

\(\Large V_{RMS}.\frac{V_{RMS}}{z}.\frac{R}{z}\)

\(\Large \frac{220\times 220\times 18}{33\times 33}=800\, W\)

 

 


Please choose your answer from the right side options
// // // // //
22017417

\(\large \frac{1}{C_{1}}=\frac{1}{C}+\frac{1}{C}\Rightarrow C_{1}=\frac{C}{2}\)

\(\large \frac{1}{C_{2}}=\frac{1}{C}+\frac{1}{KC}\)

So \(\large C_{2}=\frac{C}{\left ( 1+\frac{1}{K} \right )}=\frac{CK}{K+1}\)

\(\large \Delta C=\frac{CK}{K+1}-\frac{C}{2}=C\left [ \frac{K}{K+1}-\frac{1}{2} \right ]\)

\(\large =\frac{C}{2}\left [ \frac{K-1}{K+1} \right ]\)

 

 

 

 


Please choose your answer from the right side options
// // // // //
22017418

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\large tan\theta =\mu =\frac{C}{V}\)

\(\large \Rightarrow cot\theta =\frac{V}{C}\)

\(\large \Rightarrow \theta =cot^{-1}\left ( \frac{V}{C} \right ) \)

 


Please choose your answer from the right side options
// // // // //
22017419

\(\large I_{R}=4I\, cos^{2}\frac{\Phi }{2}\)

Hence \(\large I_{R} \propto cos^{2}\frac{\Phi }{2}\)

 

 

 


Please choose your answer from the right side options
// // // // //
220174110

\(\large \beta _{dc}=\frac{\alpha _{dc}}{1-\alpha _{dc}}\)

\(\large \Rightarrow \frac{\alpha _{dc}}{\beta _{dc}}=1-\alpha _{dc}\)

\(\Large \Rightarrow \frac{\beta_{dc}-\alpha _{dc}}{\beta_{dc}.\alpha _{dc}} =\frac{\beta_{dc}\left ( 1-\frac{\alpha _{dc}}{\beta_{dc}} \right )}{\beta_{dc}.\alpha _{dc}} \)

\(\Large = \frac{1-\frac{\alpha _{dc}}{\beta_{dc}}}{\alpha _{dc}} \)

\(\Large = \frac{1-1+\alpha _{dc}}{\alpha _{dc}}=1 \)

 


Please choose your answer from the right side options
// // // // //
220174111

 

 

 

 

\(\large = \frac{N}{N_{0}}=e^{-\lambda t}\)

Now on applying values

\(\large e^{-\lambda \times 4}=\frac{2500}{10000}\)

\(\large \Rightarrow e^{\lambda 4}=4\)

\(\large \Rightarrow 4\lambda = log_{e}4\)

\(\large \Rightarrow 4\lambda = 2 log_{e}2\)

\(\Large \Rightarrow \lambda = 0.5\times log_{e}2\)


Please choose your answer from the right side options
// // // // //
220174112

What is number of waves in glass slab ? No. of waves in glass slab is same as number of waves in water column

\(\large \mu _{g}.h _{g}=\mu _{w}.h _{w}\)

\(\large \mu _{w}=\frac{\mu _{g}.h _{g}}{h _{w}}\)

On applying values

\(\Large \mu _{w}=\frac{1.5\times 6}{7}=1.286\)

 

 

 


Please choose your answer from the right side options
// // // // //
220174113

\(\Large E=\frac{13.6}{1}-\frac{13.6}{2^{2}}\)

\(\large =10.2eV (=hV)\)

\(\large hV=\Phi _{0}+eV_{s}\)

By given values

\(\large 10.2 \,eV=4.2 \,eV+eV_{s}\)

Hence \(\large V_{s}= 6V\)

 


Please choose your answer from the right side options
// // // // //
220174114

\(\Large M_{0}=\frac{e}{2m_{0}}\times L_{0}\)

\(\large L_{0}\propto n\)

So \(\Large M_{0}\propto n\)

 

 

 


Please choose your answer from the right side options
// // // // //
220174115

It is on theoritycal fact as

Photodiode is a device which is always operated in reverse bias

 


Please choose your answer from the right side options
// // // // //
220174116

The given values are \(\large I=2\, Kg\, m^{2},\omega _{0}=60 \, rad/s, t =5\, min =60\, sec\)

\(\large \alpha =\frac{0-60}{300}=\frac{-1}{5}\, rad/s^{2}\)

The question is asking for 2 minutes i.e. 120 sec

\(\large \omega = 60-\frac{1}{5}\times 120=36\, rad/s\)

\(\large L=I\omega = 2\times 36=72\, kg\, m^{2}/s\)

 

 

 


Please choose your answer from the right side options
// // // // //
220174117

\(\large y=A\, sin\left [ 2\pi \left ( \frac{t}{T}-\frac{x}{\lambda } \right ) +\frac{\pi }{4}\right ]\)

Compare with given equation in question

\(\large y=3\, sin\left [ 2\pi \left ( \frac{t}{6}-\frac{x}{10 } \right ) +\frac{\pi }{4}\right ]\)

Hence \(\large \lambda =10\)

 

 

 


Please choose your answer from the right side options
// // // // //
220174118

 

\(\Large \frac{Q}{t}=\sigma AT^{4}\)

So \(\Large A\propto \frac{1}{T^{4}}\)

So \(\Large \frac{A_{2}}{A_{1}}=\frac{T_{1}^{4}}{T_{2}^{4}}\)

\(\Large \Rightarrow \frac{4\pi r_{2}^{2}}{4\pi r_{1}^{2}}=\frac{T_{1}^{4}}{T_{2}^{4}}\)

\(\Large \Rightarrow \frac{r_{2}}{r_{1}}=\left ( \frac{T_{1}}{T_{2}} \right )^{2}\)


Please choose your answer from the right side options
// // // // //
220174119

What is first overtone for open pipe \(\Large v_{1}=\frac{v}{L}\)

for closed pipe \(\Large {v}'_{1}=\frac{3v}{4L}\)

\(\Large v_{1}-{v}'_{1}=\frac{v}{L}-\frac{3v}{4L}=3\)

So \(\Large \frac{v}{4L}=3 \,\,then\,\, \frac{v}{L}=12\)

When length of open pipe is made  \(\Large \frac{L}{3}\) the fundamental frequency  \(\Large \frac{v}{2\left ( \frac{L}{3} \right )}=\frac{3v}{2L}\)                             

the fundamental frequency of closed pipe when length is made 3 times \(\Large {v}'=\frac{v}{4\left ( 3L \right )}=\frac{v}{12L}\)

What Beats produced is \(\large v-{v}'\)=\(\large \frac{3v}{2L}-\frac{v}{12L}=\frac{17}{12}.\frac{v}{L}=17\)

 

 

 

 

 

 

 


Please choose your answer from the right side options
// // // // //
220174120

What is the maximum tension in the rope ?

It is m (g + a)

What is the Stress in the rope

it is \(\Large \frac{m(g+a)}{\pi r^{2}}\)

So \(\Large T=\frac{m(g+a)}{\pi r^{2}}=\frac{m(g+a)}{\pi \left ( \frac{d}{2} \right )^{2}}\)

Now \(\Large T=\frac{4m(g+a)}{\pi d^{2}}\)

Then \(\Large d=\left [ \frac{4m(g+a)}{\pi T} \right ]^{\frac{1}{2}}\)


Please choose your answer from the right side options
// // // // //
220174121

 

 

 

 

What is the K E  of rolling solid sphere ?

\(\large \frac{1}{2}mV^{2}+\frac{1}{2}I\omega ^{2}\)

\(\large \frac{1}{2}mV^{2}+\frac{1}{2}\times \frac{2}{5}mr^{2}\omega ^{2}=\frac{7}{10}mV^{2}\)

What is the P E of the spring on maximum compression x

\(\Large \frac{1}{2}kx^{2}\)

So  \(\Large \frac{1}{2}kx^{2}\)\(\Large =\frac{7}{10}mV^{2}\)

\(\Large x^{2}=\frac{14}{10}\frac{mV^{2}}{k}\)

Let's apply values to this equation

\(\large x^{2}=\frac{14}{10}\frac{2\times 6^{2}}{36}\)

\(\large x=\sqrt{2.8}\,\,m\)


Please choose your answer from the right side options
// // // // //
220174122

\(\Large \alpha =\frac{\omega -\omega _{0}}{t}\)

On applying given values \(\Large \alpha =\frac{24}{3}=3\: rad/s^{2}\)

Total angle turned \(\Large \theta =\omega _{0}t+\frac{1}{2}\alpha t^{2}\)

\(\large \theta =0+\frac{1}{2}\times 3\times 8^{2}=96 \,rad\)


Please choose your answer from the right side options
// // // // //
220174123

 

 

How can we represent fundamental frequency of the first wire

\(\Large f=\frac{1}{2L_1}\sqrt{\frac{T}{m}}=\frac{1}{2L_1}\sqrt{\frac{T}{\pi r_{1}^{2}\rho }}=\frac{1}{2L_{1}r_{1}}\sqrt{\frac{T}{\pi \rho }}\)

The first overtone \(\Large f_{1}=\frac{1}{L_{1}r_{1}}\sqrt{\frac{T}{\pi \rho }}\)

The second overtone \(\Large f_{2}=\frac{3}{2L_{2}r_{2}}\sqrt{\frac{T}{\pi \rho }}\)

\(\large f_{1}=f_{2}\)

So \(\Large \frac{1}{L_{1}r_{1}}\sqrt{\frac{T}{\pi \rho }}\)\(\Large =\frac{3}{2L_{2}r_{2}}\sqrt{\frac{T}{\pi \rho }}\)

\(\large 3L_{1}r_{1}=2L_{2}r_{2}\)

\(\Large \frac{L_{1}}{L_{2}}=\frac{2}{3}\frac{r_{2}}{r_{1}}\, \, Here \, \, r_{1}=2r_{2}\, \, so \, \, \frac{L_{1}}{L_{2}}=\frac{1}{3}\)

 

 

 

 


Please choose your answer from the right side options
// // // // //
220174124

\(\large F = 2\pi rT\, \, \Rightarrow 2\pi r=\frac{F}{T}\)

Now let's put the given value

\(\Large F = 2\pi rT\, \, \Rightarrow 2\pi r=\frac{105\times 10^{-5}}{7\times 10^{-2}}=1.5\, cm\)

 

 

 

 


Please choose your answer from the right side options
// // // // //
220174125

\(\large \frac{C_{p}}{C_{v}}=\frac{7}{5}\, \, \Rightarrow C_{v}=C_{p}\frac{5}{7} \)

Again \(\large R=C_{p}-C_{v}\)

\(\Large \Rightarrow R=C_{p}-\frac{5}{7}C_{p}=\frac{2}{7}C_{p}\)

Hence \(\Large n=\frac{2}{7}=0.2857\)


Please choose your answer from the right side options
// // // // //
220174126

In case of  ideal gas PV = nRT

\(\Large PV=\frac{{m}'}{M}RT=\frac{{m}'}{V}.\frac{RT}{M}\)  (where m' is the mass of the gas and M molecular weight)

So \(\Large P=\frac{\rho RT}{m} ,\, \, \, \, \, \,\rho \) is the density

\(\large \rho =\frac{PM}{RT}=\frac{PM}{NKT}\, \, \, \, \, \, \, N \, \,is\, \, Avogadro \, \,number\)

\(\Large \rho =\frac{Pm}{KT}\)   (where \(\Large m = \frac {M}{N}\)= mass of each molecule)


Please choose your answer from the right side options
// // // // //
220174127

Volume of big drop = n(Volume of small drop)

\(\large \frac{4}{3}\pi R^{3}=n.\frac{4}{3}\pi r^{3}\, \, \Rightarrow R^{3}=nr^{3}\)

\(\Large R=n^{\frac{1}{3}}.r\)

\(\large E_2\) = Surface energy of n drops =\(\large n\times 4\pi r^{2}\times T\)

\(\large E_1\)= Surface energy of big drop =\(\large 4\pi R^{2} T\)

\(\Large \frac{E_{2}}{E_{1}}=\frac{nr^{2}}{R^{2}}\)

On applying value of R in above equation \(\Large \frac{E_{2}}{E_{1}}=n^{\frac{1}{3}}\)

So the Ratio is \(\Large \sqrt[3]{n}:1\)


Please choose your answer from the right side options
// // // // //
220174128

 

\(\Large E_{1}=\frac{GMm}{R}\)

\(\Large E_{2}=\frac{GMm}{2\left ( R+h \right )}\)

So \(\Large \frac{E_{1}}{E_{2}}=\frac{2\left ( R+h \right )}{R}\)


Please choose your answer from the right side options
// // // // //
220174129

Displacement \(\large X=A \, \, sin\omega t\)

Velocity \(\Large v=\frac{dx}{dt}=A\omega cos\omega t\)

We know \(\large v=\pi \,m/s \,\, and\, \, T=16 sec \)

Now \(\Large \omega =\frac{2\pi }{T}=\frac{2\pi }{16}=\frac{\pi }{8}\, rad/s\)

So \(\large \pi =A\times \frac{\pi }{8}\times cos \frac{\pi }{8}\times 2\)

Based on value it is \(\large 1=\frac{A }{8}cos \frac{\pi }{4}\, \, \Rightarrow A=8\sqrt{2}\, m\)


Please choose your answer from the right side options
// // // // //
220174131

 

\(\large {g}'=g\left ( 1-\frac{d}{R} \right )\)

\(\large {g}'=\frac{g}{n}\)

\(\large \Rightarrow \frac{g}{n} =g\left ( 1-\frac{d}{R} \right )\)

\(\large \Rightarrow \frac{1}{n} = 1-\frac{d}{R} \Rightarrow \frac{d}{R}=1-\frac{1}{n}\)

\(\large d=R\left ( \frac{n-1}{n} \right )\)


Please choose your answer from the right side options
// // // // //
220174133

What is the fundamental frequency for closed pipe ?

\(\Large n_{c}=\frac{V}{4L}=100 \, HZ\)

What is the fundamental frequency for open pipe ?

\(\large n_{o}=\frac{V}{2L}=2n_{c}=200 \, HZ\)

So open at both the ends, the frequencies produced in Hz are 200, 400, 600, 800, …

 


Please choose your answer from the right side options
// // // // //